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Validity of the long-wave approximation in periodically layered media
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ABSTRACT
In seismic modelling, a stack of thin layers is often replaced by an effective equivalent
anisotropic homogeneous slab. For waves with finite wavelength, this is an approx-
imation, and the error thus introduced can be quantified by considering the relative
error in the phase velocity between the layer stack and the effective medium. For
periodic layering, the relative phase-velocity error can be expressed in closed form as
a function of wavelength, reflection coefficients and layer thicknesses. By comparing
the relative phase-velocity error with laboratory measurements and numerical simu-
lations, we find that the difference in seismic response between a periodic layer stack
and an equivalent effective medium depends not only on wavelength, but it also de-
pends significantly on reflection coefficients and the ratio between layer thicknesses.
For a 1% relative error in the phase velocity, and if all layers have the same thick-
ness measured in vertical traveltime, we find that the wavelength must be larger than
approximately three times the layer period for a reflection coefficient of 0.1, but this
increases to 13 times the layer period for a reflection coefficient of 0.9, which is highly
unrealistic in a geological setting.

I N T R O D U C T I O N

A common procedure in synthetic seismogram generation is
the replacement of a stack of thin layers with an anisotropic
homogeneous medium (Bruggeman 1937; Riznichenko 1949;
Postma 1955; Helbig 1958; Backus 1962). This approach is
strictly valid only in the limit of infinite wavelength, but in
practice it is used for seismic waves at finite wavelengths. We
refer to this as the long-wave approximation. A problem that
naturally arises is how to evaluate the errors in phase and
amplitude thus introduced as a function of wavelength, layer
thicknesses and layer parameters. We propose using the rela-
tive difference in phase velocity between the layer stack and
the effective medium as an error function of the long-wave
approximation. In order to gain new insight, we restrict our-
selves to the case of a periodically layered medium. This is
sufficiently simple to yield a closed-form error function, which
can be used to determine when a layer stack can be replaced
by an homogeneous effective medium.
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Many of the sedimentary processes are, by their very na-
ture, cyclic (Anstey and O’Doherty 2002a,b). Although perfect
periodic layering is rare, layer sequences are sometimes nearly
periodic and can be approximated by a periodic medium.
Morlet et al. (1982) showed how a real well log can be ap-
proximated by a periodic medium, and how wave propagation
through a periodic medium can be used to aid interpretation
of seismic data in the vicinity of a well.

The theory of periodically layered elastic media was fully
developed by Rytov (1956), who also suggested using the
second-order terms in the low-frequency expansion of the
dispersion relationship to establish the conditions of valid-
ity for the long-wave approximation. However, Rytov (1956)
did not extend this discussion. Christensen (1979) derived
an expansion for the dispersion relationship of a periodi-
cally layered medium up to the second order in wavenumber,
but he did not consider numerical examples and he did not
use it to establish the limits of the validity of the long-wave
approximation.

Several authors (Helbig 1984; Melia and Carlson 1984;
Carcione et al. 1991; Marion et al. 1994; Hovem 1995) have
tried to quantify the error in the long-wave approximation by
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attempting to establish an approximate minimum wavelength
λ0 at which the amplitude and phase of waves propagating
in a layered medium can be approximated by the amplitude
and phase of waves propagating in an anisotropic homoge-
neous medium. Instead of using the wavelength λ0 directly, it
is more convenient to use the ratio R0 = λ0/d, where d is a
typical layer thickness.

Helbig (1984) found a theoretical value of R0 > 3, while
Melia and Carlson (1984) concluded from laboratory experi-
ments that R0 lies between 10 and 100. Marion et al. (1994)
also performed laboratory experiments and found that R0 lies
in the range between 8 and 15, while Carcione et al. (1991)
found from numerical experiments that R0 depends on the re-
flection coefficients of the medium and that the approximate
value of R0 lies in the range of 5 to 8. Folstad and Schoenberg
(1992) found from numerical experiments that R0 had an ap-
proximate value of 10, while Hovem (1995) suggested, from
theoretical considerations, a value of R0 = 4. Frazer (1994)
considered a random binary medium and used three different
approximate methods to derive the effective long-wave wave-
velocity, but made no attempt to estimate a value for R0.

From the works cited above, it is clear that different ap-
proaches and different models seem to give different answers
as to what conditions have to be satisfied before a finely
layered medium can be approximately replaced by a homo-
geneous medium. In the following sections, we give a sim-
ple closed-form expression for the difference between a peri-
odic finely layered medium and an equivalent homogeneous
medium in terms of an error function which depends on wave-
length (or frequency), layer thickness and the reflection coef-
ficients. We do this by obtaining an approximate fourth-order
dispersion relationship for a periodically layered medium and
use this relationship to compute the phase-velocity error of the
effective medium relative to the periodically layered original
medium. We also briefly discuss how these results apply to
cyclic stratification which is not exactly periodic. Numerical
examples give new insight into the error made in replacing
a finely layered medium with a homogeneous medium, and
how the error depends both on the magnitude of the reflec-
tion coefficients and on the ratio R of the wavelength to layer
thickness. In the last section we discuss the limitations of the
proposed error function and the geological significance of the
numerical examples. For simplicity, this work is limited to
wave propagation normal, or near normal, to the layering of
the medium. The medium can then be treated as purely acous-
tic and the anisotropy of the effective medium does not enter
the discussion.

Figure 1 Periodically layered medium.

WAV E P R O PA G AT I O N I N A P E R I O D I C
S TA C K O F P L A N E L AY E R S

Consider a horizontally plane-layered medium composed of
layers periodically alternating N times; one layer is char-
acterized by wave velocity c1, density ρ1 and thickness d1, the
other layer is characterized by wave velocity c2, density ρ2 and
thickness d2. The resulting medium is shown in Fig. 1. Since
the main objective of this paper is the study of the properties
of waves propagating in the direction normal to the layering,
elastic effects are neglected and all layers are assumed to be
purely acoustic.

Waves at the top of one period can be related to the waves
at the top of the next period through a change of the phase
�, which must be of the general form � = ωτ , where ω is the
circular frequency and τ is given by

τ = d/C(ω), (1)

where d = (d1 + d2) is the thickness of one period and C(ω)
is the frequency-dependent velocity of the wave.

The value of � = ωτ is given implicitly by the dispersion
relationship (Rytov 1956),

cos(ωτ ) = cos(ωτ1 + ωτ2) − 2r2

1 − r2
sin(ωτ1) sin(ωτ2), (2)

where τ 1 = d1/c1 and τ 2 = d2/c2.
The reflection coefficient r is given by

r = Z1 − Z2

Z1 + Z2
, (3)

where the impedance Zi is defined by Zi = ρ i ci, i = 1, 2. Equa-
tion (2) was originally derived by Rytov (1956), but expressed
in terms of densities, moduli and layer thicknesses instead of
reflection coefficients and traveltimes.
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In the limit of very low frequency or very long wavelength,
the dispersion equation (2) gives the wave velocity C0 of an
‘effective ’ homogeneous medium equivalent to the periodic
layered medium, i.e.

1
C2

0

= 1
d2

[
(τ1 + τ2)2 +

(
4r2

1 − r2

)
τ1τ2

]
. (4)

Expressing equation (4) in terms of layer parameters gives

1
C2

0

=
〈
ρc−1

33

〉
, (5)

where 〈〉 denotes thickness-weighted averages, and the stiffness
c33 = ρc2.

It is also useful to define a wavelength λ = 2πC0/ω and
the ratio of wavelength to layer spacing by the dimensionless
number R given by R = λ/d.

Sedimentary rocks sometimes exhibit layers showing cyclic
successions on many different scales. These successions are
usually associated with cyclic changes of sea-level, which
might in turn be accounted for by climatic change and plate
tectonics. These patterns appear in well logs and on seismic
data (Anstey and O’Doherty 1971, 2002a,b). The well logs
show a typical cyclic pattern of reflection coefficients with al-
ternating sign, which is also the most important feature of a
periodic medium. However, the cycles in real logs are rarely
exactly periodic, but can rather be characterized as quasi-
periodic or nearly periodic. The dispersion relationship given
above is based on an exactly periodic medium and cannot
easily be generalized. However, a suggestion is to use equa-
tion (2) as a rough approximation to the dispersion relation-
ship of a quasi-periodic medium if the reflection coefficients
of the quasi-periodic medium are constant and the layer thick-
nesses dl, l = 1, . . . N, of the quasi-periodic medium can be
expressed as dl = dk + δdl, k = 1, 2, where the deviations
δdl can be considered to be random and small with zero mean
value. The resulting fluctuations in the amplitude and phase of
a wave travelling through the quasi-periodic medium would
then be small and tend to cancel each other out. As a crude ap-
proximation, equation (7) would then still be approximately
valid with the layer thicknesses estimated by averaging.

T H E P H A S E - V E L O C I T Y E R R O R

The objective of this section is to study the behaviour of waves
in a plane-layered periodic medium when the wavelength is
long compared to the period length; specifically, it is to ex-
press R = λ/d, where λ is the wavelength, as a function of
the difference in phase velocity between a periodically layered

medium and the effective homogeneous medium with velocity
given by equation (4).

Consider a periodically layered medium with period d

and wave velocity C0 in the zero-frequency limit given by
equation (4). For a finite frequency, the layered medium is
assumed to have wave velocity C(ω) given by equation (2).
The relative phase-velocity error ε is defined as

ε = C0 − C(ω)
C0

. (6)

The dispersion equation (2) can be solved numerically to
obtain R = λ/d as a function of ε. An expression in closed form
is also desirable for ease of interpretation. In the Appendix it
is shown how the dispersion equation (2) can be solved to give
a closed-form expression in terms of R. The solution is valid
only for large values of R and is given by equation (A8), i.e.

R = λ/d = π√
3

√
(1 − ε)−4 − β

(1 − ε)−2 − 1
, (7)

where the quantity β is given by equation (A5) as

β =
[
(1 + τ2/τ1)4 +

(
8r2

1−r2

)(
τ2/τ1 + (τ2/τ1)3

)]
[
(1 + τ2/τ1)2 +

(
4r2

1−r2

)
(τ2/τ1)

]2 . (8)

Christensen (1979) also derived a long-wavelength expres-
sion for the dispersion relationship of a periodically layered
medium, but this expression was based on an approximate so-
lution of the wavefield. The expression given in equation (7)
is the main result of this section since it expresses the rela-
tionship between R and the relative phase-velocity difference
ε between the zero-frequency limit C0 of the phase velocity C

and the phase velocity itself. By specifying a largest acceptable
relative phase-velocity error between a periodically layered
medium and the effective medium, equation (7) can be used
to compute a corresponding minimum value for R.

N U M E R I C A L R E S U LT S

Model 1 given in Table 1 is similar to that used in the labora-
tory experiment performed by Marion et al. (1994); only the
thicknesses of the layers are slightly changed. Fig. 2 shows R

(circles) for this model, computed as a function of ε = C0−C
C0

using equation (7); the line shows the corresponding numerical
solution of equation (2).

Fig. 2 shows that the value of R is relatively insensitive to
the value of ε when ε is larger than 0.01–0.02. However, when
ε is smaller than approximately 0.01, R increases rapidly as ε

decreases. In the limit when ε approaches zero, R approaches
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Table 1 Material parameters for models 1,2 and 3

Model Material Thickness (mm) Velocity (m/s) Density (kg/m3)

1 Plastic 0.5 2487 1210
Steel 1.0 5535 7900

2 Epoxy 0.50 2530 1120
Glass 0.50 5560 2510

3 Epoxy 0.50 2530 1815
Glass 0.50 5560 1815

Figure 2 R as a function of relative phase-velocity difference, ε =
(C0 − C)/C0, for model 1. The circles show the approximate rela-
tionship given by equation (7), while the line is the numerical solution
of the dispersion equation (2).

infinity. Fig. 2 indicates that, at a value of R equal to ap-
proximately 11.0 corresponding to a relative difference ε =
0.01, the periodically layered medium is close to a homo-
geneous medium with wave velocity given by the long-wave
approximation.

The laboratory measurements of Marion et al. (1994) were
made in the time domain using source pulses containing a
narrow range of frequencies. Strictly, equation (7) (and equa-
tion (2)) is only valid for monochromatic plane waves. As
an additional check of equation (7), time-domain transmis-
sion responses were computed with numerical modelling using
model 1 defined in Table 1. The modelling was implemented
in the frequency–wavenumber domain, followed by a Fourier
transform to the time domain, and it provides an exact so-
lution, within numerical errors (Ursin 1983). A total of 248
layers was used. This choice makes the resulting layer stack
large enough to avoid interference caused by internal reflec-

tions between boundaries at the top and bottom. Such internal
reflections are unwanted and would distort the numerical re-
sults. A larger number of layers could have been used, but
this would not change the numerical results. In addition, half-
spaces were added below and above the periodically layered
medium, with wave velocity defined by the average given in
equation (4). This ensures acoustic coupling in the infinite
wavelength limit.

Figs 3 and 4 show numerical simulations, with the domi-
nant frequencies of the source corresponding to R = 4.0 and
R = 11.0, respectively. The source pulse was the derivative of
a Gaussian time function where the spectrum is proportional
to ω exp (−ω2/4 ω2

0) and the peak of the spectrum is located
at ω = √

2ω0. The solid line shows the corresponding numer-
ical simulation when the periodically layered medium was re-
placed with a completely homogeneous medium with wave
velocity given by the average defined in equation (4). Thus
Fig. 4 shows that a 1% error in the phase velocity is small
enough for the time response of a wave propagating through
the periodic medium given by model 1 to be very close to the
time response of a wave propagating through a homogeneous
medium.

In Fig. 5, a semblance measure has been used to compare
additional simulations for model 1 with simulations for the
corresponding homogeneous model, using a range of source
peak frequencies corresponding to values of R from 4.0 to

Figure 3 Simulation of a periodically layered medium defined by
model 1 (thin line) and of a corresponding homogeneous medium
(solid line). The dominant wavelength of the source pulse corresponds
to R = λ/d = 4.0.
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Figure 4 Simulation of a periodic layered medium defined by model 1
(thin line) and of a corresponding homogeneous medium (solid line).
The dominant wavelength of the source pulse corresponds to R =
λ/d = 11.0.

20.0. The semblance is computed using

S =
∑

(ai + bi )2

2
∑ (

a2
i + b2

i

) , (9)

where ai and bi are the samples of the simulated seismograms
and the summation is over the number of samples (Carcione
et al. 1991).

Fig. 5 shows that the semblance value at R = 11.0 is slightly
less than 1.0, approaching 1.0 at R ≈ 15. The laboratory
measurements made by Marion et al. (1994) showed that the

Figure 5 Semblance as a function of R for model 1 (see Table 1).

Figure 6 R as a function of relative phase-velocity difference, ε =
(C0 − C)/C0, for model 2. The circles show the approximate rela-
tionship given by equation (7), while the line is the numerical solution
of the dispersion relationship given by equation (2).

transition from short- to long-wavelength behaviour occurs
between R = 8 and R = 15. Thus, laboratory measurements
and numerical simulation are in agreement with the predic-
tions obtained from equation (7).

Although Fig. 5 contains the same information as Fig. 2, the
time-domain simulations used to compute Fig. 5 more closely
resemble the experimental situation described by Marion et al.

(1994), and serve as a check that the monochromatic plane-
wave expressions used to obtain Fig. 2 are relevant.

Models 2 and 3 defined in Table 1 coincide with two of the
models used by Carcione et al. (1991); these were based on
several physical models used by Melia and Carlson (1984).

Figs 6 and 7 show R as a function of ε (circles) computed
using equation (7) for models 2 and 3. The line shows the cor-
responding numerical solution obtained from the dispersion
equation (2). At the point ε = 0.01, Figs 6 and 7 give values of
R of approximately 8 and 5, respectively. This indicates that
the periodic medium can be approximated with an effective
homogeneous medium for values of R larger than 5 and 8
for models 2 and 3, respectively. Carcione et al. (1991) con-
cluded from numerical experiments that the long-wavelength
approximation is valid for values of R larger than 5–6 and 8,
respectively. The predictions using equation (7) are therefore
in agreement with the numerical experiments of Carcione et al.

(1991).
Note that the expression given by equation (7) is an

approximation valid for R > 2π , i.e long wavelengths, and
will deviate from the results obtained from the exact dispersion
relationship given by equation (2) when R becomes less than
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Figure 7 R as a function of relative phase-velocity difference, ε =
(C0 − C)/C0, for model 3. The circles show the approximate rela-
tionship given by equation (7), while the line is the numerical solution
of the dispersion relationship given by equation (2).

2π . This is clearly shown in Figs 6 and 7, where the circles
(approximation using equation (7)) increasingly deviate from
the line (exact result using equation (2)) for values of R less
than approximately 6. This is also, of course, the case for the
results shown in Fig. 2, but is much less visible because the
dispersion relationship in this case is only shown for relatively
large values of R.

The main difference between models 1, 2 and 3, used to
compute the results shown in Figs 2, 6 and 7, respectively, is
the density contrast between the layers. Thus the reflection
coefficient for model 1 is larger in magnitude than the reflec-
tion coefficient for model 2, which again is larger than the
reflection coefficient for model 3. The difference in reflection
coefficient between the models leads to different relationships
between the relative velocity difference ε and R, and hence dif-
ferent transition points to an effective homogeneous medium.
This can be further investigated by keeping ε and the ratio of
layer thicknesses d2/d1 fixed, and using equation (7) (or the
numerical solution of equation (2)) to predict how the mini-
mum value of R changes with changing reflection coefficient.
Fig. 8 shows R (circles) as a function of the reflection coeffi-
cient r at a constant value of ε = 0.01, computed using model
1 and changing only the densities. The line shows the cor-
responding numerical solution obtained from the dispersion
equation (2).

Taking the transition point to an effective homogeneous
medium at a relative velocity difference of ε = 0.01, Fig. 8
shows the transition point, from dispersive wave propagation
in a periodically layered medium to non-dispersive wave prop-

Figure 8 R as a function of reflection coefficient at a relative phase-
velocity difference of ε = (C0 − C)/C0 = 0.01 for model 1. The circles
show the approximate relationship given by equation (7), while the
line is the numerical solution of the dispersion relationship given by
equation (2).

agation in a homogeneous effective medium, as a function of
reflection coefficient. The interesting observation here is that
the long-wave approximation is satisfied for smaller values of
R if the reflection coefficient is small than is the case if the
reflection coefficient is large. In cyclic sediments the reflec-
tion coefficients are rarely larger than 0.1, so from Fig. 8 it
can be seen that this corresponds to a value of R of less than
approximately 3. For many real sediments the long-wave ap-
proximation would then be satisfied for wavelengths longer
than or equal to three times the layer period.

Fig. 9 also illustrates the effect of different ratios between
layer thicknesses for fixed reflection coefficients. The param-
eters are those given for model 2 in Table 1 and R is plotted
here as a function of the material fraction of epoxy, given by
d1/(d1 + d2), and ranging from 0.02 to 0.9.

D I S C U S S I O N A N D C O N C L U S I O N

The results in the preceding sections show that, for a seismic
wave propagating through a periodically layered medium, the
ratio R of the wavelength λ to the period thickness d can be
expressed as a function of reflection coefficient r, the ratio
τ 2/τ 1 = (d2/d1)(c1/c2) (see equation (7)) and the relative
difference in the phase velocities of the periodically layered
medium and the effective medium. For example, Fig. 8 shows
that, for a 1% relative error in the phase velocity, the wave-
length must be larger than approximately 3 for a reflection
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Figure 9 R as a function of volume fraction of the second layer
d2/(d1 + d2) (steel fraction) at a relative phase-velocity difference
of ε = (C0 − C)/C0 = 0.01 for model 1. The circles show the approx-
imate relationship given by equation (7), while the line is the numerical
solution of the dispersion relationship given by equation (2).

coefficient of 0.1 but it increases to 13 for a reflection co-
efficient of 0.9, corresponding to an increase in velocity by
a factor of 10, and an increase in stiffness by a factor of
100. Also, Fig. 9 shows that, for a 1% relative error in
the phase velocity and for a fixed reflection coefficient, the
wavelength must be larger than approximately 5 for a layer
thickness ratio, d2/(d1 + d2), of epoxy equal to 0.05, but
it increases to approximately 9 for a layer thickness ratio
of 0.9.

Using equation (7), or the corresponding numerical solu-
tion obtained from the dispersion equation (2), it is now
possible to relate the seemingly different estimates obtained
for the minimum wavelength λ0 at which an effective ho-
mogeneous medium can be regarded as a good replacement
of a periodic stack of layers. For example, Helbig (1984)
obtained λ0/d = 3, where Carcione et al. (1991) obtained
λ0/d = 5–8 and Marion et al. (1994) obtained λ0/d = 8–
15. These results are different because the reflection coeffi-
cients and the traveltime ratios are different and equation (7)
provides the link between these previous studies. Moreover,
Marion et al. (1994) obtained larger values for λ/d mainly
because they considered models with larger density contrast
and hence larger reflection coefficients than Helbig (1984) and
Carcione et al. (1991). In fact, the transition from disper-
sive wave propagation to non-dispersive wave propagation
in a periodically layered medium explicitly depends on the
magnitude of the reflection coefficient. Equation (7) incorpo-
rates this essential feature of a periodically layered medium

and provides a simple way to understand the laboratory
measurements.

The results derived in the previous sections are specific to a
periodic medium composed of two types of material, and the
numerical examples chosen to make comparisons with labora-
tory experiments possible. Sedimentary sequences with exact
periodicity are not common, but sedimentary sequences are, in
many cases, cyclic (see Anstey and O’Doherty 2002a,b; Wil-
son 1997).

As discussed previously, equation (7) is proposed as a crude
approximation for a near-periodic cyclic medium, with the
layer thicknesses estimated by averaging. Fig. 8 then shows
that, for real near-periodic cyclic sedimentary sequences with
small reflection coefficients, the long-wave approximation
would be satisfied for wavelengths equal to or longer than
three times the layer period.
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A P P E N D I X

The low-frequency dispersion relationship

When the frequency ω approaches zero, the right- and left-
hand sides of equation (2) may be expanded in a Taylor series.
Equation (2) gives, to second order,

1 − 1
2

ω2τ 2 = 1 − 1
2

(ωτ1 + ωτ2)2 − 2r2

1 − r2
ωτ1ωτ2. (A1)

This is equal to

τ 2
0 = (τ1 + τ2)2 +

(
4r2

1 − r2

)
τ1τ2, (A2)

where τ 0 = d/C0, and the subscript 0 indicates that this is the
zero-frequency limit. Equation (A2) can also be written as

1
C2

0

= 1
d2

[
(τ1 + τ2)2 +

(
4r2

1 − r2

)
τ1τ2

]
. (A3)

Expanding equation (2) up to fourth order yields

1
24

(ωτ )4 − 1
2

(ωτ )2 = 1
24

(ωτ0)4β − 1
2

(ωτ0)2, (A4)

where τ = d/C and

β =
[
(1 + τ2/τ1)4 +

(
8r2

1−r2

)(
τ2/τ1 + (τ2/τ1)3

)]
[
(1 + τ2/τ1)2 +

(
4r2

1−r2

)
(τ2/τ1)

]2 . (A5)

Solving equation (A4) for ωτ 0 leads to

ωτ0 = 2
√

3

√
(τ/τ0)2 − 1
(τ/τ0)4 − β

(A6)

or

λ/d = π√
3

√
(C0/C)4 − β

(C0/C)2 − 1
, (A7)

where λ = 2πC0/ω. Equation (A7) can be rewritten as

λ/d = π√
3

√
(1 − ε)−4 − β

(1 − ε)−2 − 1
, (A8)

where (C0 − C)/C0 = ε.
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